八年级数学教学反思

时间:2024-08-16 16:29:37
人教版八年级数学教学反思

人教版八年级数学教学反思

身为一名人民教师,教学是重要的任务之一,借助教学反思可以快速提升我们的教学能力,优秀的教学反思都具备一些什么特点呢?下面是小编为大家整理的人教版八年级数学教学反思,欢迎阅读与收藏。

人教版八年级数学教学反思1

一、教学的成功体验

《数学课程标准》明确指出:“有效的数学活动不能单纯地依赖于模仿与记忆,学生学习数学的重要方式是动手实践、自主探索与合作交流,以促进学生自主、全面、可持续发展”.数学教学是数学活动的教学,是师生之间、学生之间相互交往、积极互动、共同发展的过程,是“沟通”与“合作”的过程.本节课我结合勾股定理的历史和毕答哥拉斯的发现直角三角形的特性自然地引入了课题,让学生亲身体验到数学知识来源于实践,从而激发学生的学习积极性.为学生提供了大量的操作、思考和交流的学习机会,通过“观察“——“操作”——“交流”发现勾股定理。层层深入,逐步体会数学知识的产生、形成、发展与应用过程.通过引导学生在具体操作活动中进行独立思考,鼓励学生发表自己的见解,学生自主地发现问题、探索问题、获得结论的学习方式,有利于学生在活动中思考,在思考中活动.

二、信息技术与学科的整合

在信息社会,信息技术与课程的整合必将带来教育者的深刻变化.我充分地利用多媒体教学,为学生创设了生动、直观的现实情景,具有强列的吸引力,能激发学生的学习欲望.心理学专家研究表明:运动的图形比静止的图形更能引起学生的注意力.在传统教学中,用笔、尺和圆规在纸上或黑板上画出的图形都是

静止图形,同时图形一旦画出就被固定下来,也就是失去了一般性,所以其中的数学规律也被掩盖了,呈现给学生的数学知识也只能停留在感性认识上.本节课我通过Flash动画演示结果和拼图程以及呈现教学内容。真正体现数学规律的应用价值.把呈现给学生的数学知识从感性认识提升到理性认识,实现一种质的飞跃.

人教版八年级数学教学反思2

一、教材分析

四边形是人们日常生活中应用较广的一种几何图形,尤其是平行四边形用途更多,因此本节内容与实际联系比较紧密。平行四边形的性质是在学生小学阶段认识了平行四边形以及七年级三角形一章中学习了一般多边形及内角和的基础上进行的,既是对学生在进入初中以来所学几何知识的综合运用,又是以后学习平面几何的基础。

对于平行四边形,按照图形概念的从属关系,平行四边形首先是四边形,具有四边形的一般性质,又是两组对边分别平行的特殊四边形,是四边形中的一类特殊图形,有它特殊的性质,同时它又包括矩形、菱形、正方形,具有它们的共性,最为重要的是探索平行四边形的性质时,常用三角形的知识来解决问题,是平行线的性质、全等三角形等知识的延续和深化,也是后续学习矩形、菱形、正方形等知识的坚实基础,在教材中起着承上启下的作用.平行四边形的性质还为证明两条线段相等、两角相等、两直线平行提供了新的方法和依据,拓宽了学生的解题思路.把四边形的问题转化为三角形的问题,把末知转化为已知,是学生能力提高的关键,所以学好平行四边形的性质对学生提高学习几何的兴趣起着至关重要的作用。

另外本节课是在学生掌握了平移知识的基础上探究平行四边形的性质,能使学生经历观察、实验、猜想、验证、推理、交流等数学活动,对于培养学生的合情推理能力、发散思维能力以及探索、体验数学思维规律等方面起着重要的作用.

由此可见本节课的重点是:平行四边形的概念、性质及简单应用。

1.学习目标:

知识技能:理解并掌握平行四边形的相关概念和性质,培养学生初步应用这些知识解决问题的能力.

数学思考:通过观察、实验、猜想、验证、推理、交流等数学活动进一步发展学生的演绎推理能力和发散思维能力.

解决问题:学生亲自经历探索平行四边形有关概念和性质的过程,体会解决问题策略的多样性.

情感态度:培养学生独立思考的习惯与合作交流的意识,激发学生探索数学的兴趣,体验探索成功后的快乐.

2.学习重点、难点:

重点:理解并掌握平行四边形的概念及其性质.

难点:运用平移、旋转的图形变换思想探究平行四边形的性质.

二、教学反思

上完这节课,从学生上课情况、作业等多方面发现,本节课所取得的教学效果是值得肯定的,但也有需要改进的地方.为此,本人针对本节课的教学,从内容设计、新课标理念、教法等几个方面作了如下的反思:

1、流畅的教学设计、精心的内容编排、巧妙的时间运用是上好一节新课标理念下的新授课的大前提.

要开展多元化的探究活动,要学生在合作探索中体现和发现新知识,就必须在有限的45分钟时间里尽可能挤出时间和空间,让学生有更多的动手、动口、思考和尝试的机会.因此,整个新授课的教学设计必须很流畅,教学内容与练习的选取必须衔接连贯,不允许有任何时间上的点滴浪费.在教学过程中,本人通过创设情景、引入课题,出示学习目标重难点、自学指导,引导学生探究新知等教学环节.既培养学生的合作意识,又重视学生数学思想方法的学习,合理调整教学内容,使学生的学习目标更加明确,让学生在动中学.培养学生展示的意识。

2、能否以探究活动的形式,让学生通过自主探索、合作交流去发现和体验新知识是上好一节新课标理念下的新授课的关键.

数学学习过程充满着观察、实验、模拟、推断等探索性与挑战性活动.教师要改变以例题、示范、讲解为主的教学方式,引导学生投入到探索与交流的学习活动中去.这一节课学生已通过旋转操作的探究方式发现平行四边形是一个中心对称图形,进而探索得出“平行四边形的对边相等,对角相等,邻角互补”等特征,再借助动画演示使同学们对平行四边形有关边和角方面的性质有较深的理解.与此同时,学生也对旋转操作的'步骤和要领有了一定的认识,以此为基础,既能体现新课标教学理念,又能提高学生的学习兴趣和实际操作能力,取得较好的学习效果.

学生的合作探究要取得成效,离不开教师的正确引导和促进.在探究活动中,教师应扮演一个参与者与促进者相结合的角色,加入学生中去,与学生们一起共同去探求和发现新知识,但这个参与者并不能只为参与而参与,他必须在参与者们产生误解或迷惑的时候提供正确的指引,促进参与者们朝着同一的、正确的方向迈进.而在练习过程中,教师此时就要摇身一变,成为一个新课标理念下知识传授者的角色,检查每一位学生的练习质量,对不足者及时辅导,较大问题及时在课堂上反馈,好让全班同学加以注意,提高警惕.

学生获得新知识后,接下来处理讲学稿例题精讲,开心练习,安排顺序:例1,做一做,试一试,练一练,巩固与提高,拓展与延伸.

以上就是我对这节课后的一点反思,以及对新课标理念下的新授课教学的一点个人看法.然而,怎样才能进一步完善和改进新课 ……此处隐藏5018个字……体现学生的主体作用,而且效果也较前者差些。

在今后的教学中应注意从以下几个方面改进:1、在教学中要讲法则、公式的应用,也要讲公式的推导,使学生在理解公式,法则道理的基础上进行记忆,比如:我们要借助面积图形对完全平方公式做直观说明。

人教版八年级数学教学反思12

一、设计思路:

在学习本章之前已学过了一元一次方程的解法,对解整式方程特别是一元一次方程的解法思路比较了熟悉,在教受本节课是要改变教师讲例题,学生模仿的教学模式,通过说一说,试一试,想一想,练一练等多个教学环节,

由学生预习,自主学习,然后再由教师考查和点拨,但是由于种种原因,最终决定给学生一个半开半闭的区间,我先作一示范,学生练习格式,接着出现没有根的练习题,依然让学生解决,由于学生不会检验培根的情况,所以,再详究没有根产生的原因,怎样检验没有根等问题。

这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我们先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定采用第二套方案。

二、教学知识点:

在本课的教学过程中,我认为应从这样的几个方面入手:

1.分式方程和整式方程的区别:分清楚分式分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。同时,由于分母中含有未知数,所以将其转化为整式方程后求出的解就应使每一个分式有意义,否则,这个根就不是原方程的根。正是由于分式方程与整式方程的区别,在解分式方程时必须进行检验。

2、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

3、解分式方程时,如果分母是多项式时,应先写出将分母进行因式分解的步骤来,从而让学生准确无误地找出最简公分母

4、对分式方程可能产生没有根的原因,要启发学生认真思考和讨论。

人教版八年级数学教学反思13

本节课由一次函数讨论了三个已书法家对象:一元一次方程、一元一冷饮不等式和二元一次方程组,这些不是新知识,但对其认识还有待于进一步深入,本节用函数的观点对它们进行分析,这种再认识不是简单的回顾复习,而是居高临下的进行动态分析。因此,教学中,一定要把握内容的要求尺度。通过 本节课的教学,应加强知识间横向和纵向的联系。发挥函数对相关内容的统作用,能用一冷饮函数的观点把以前学习的方程与不等式进行整合。

本节课的教学发现:有一小部分的学生还是不懂得看函数不理解函数值大于0、小于0进所对应的自变量的值应如何看,如何写出满足条件的答案。因此,建议在教学过程中增加看图的练习题:知道函数值的范围求自变量的取值范围,知道自变量的取舍范围求函数值 的范围等类型的题目。

另外,运用所学知识解决实际问题是学生学习的目的,是重点,但也是学生的难点。尽管学生难接受,介是在教学的过程 中不要回避,要慢慢引导,加强训练,争取让学生能理解题目,掌握解题方法与技巧,从而提高技能。

人教版八年级数学教学反思14

“有了函数意义和函数的图象认识,我们有能力开始具体的函数的研究了,按照从简单到复杂的认知规律,今天我们研究的函数是最简单和最常见的,从实际问题入手,我们来看以下引力”,接着从四个具体的函数实例进行观察、归纳和总结,得出正比例函数的定义,结合定义写出一些正比例函数、进行判断,利用定义给出含字母的函数解析式是正比例函数,求字母的值。

研究函数的方法是结合和利用函数的图象,因此,引导学生画出具体的一些正比例函数的图象(分工比赛,资源共享,合作研究),有学生画出的众多的函数图象进行提升,得出图象的形状特征、位置情况、变化趋势,做到真正是学生自己探究得到了图象和性质,性质的叙述必须与图形相联系,这是数形结合的基础。本课的时间不是太紧的,在知识内容上,老教材中有两个变量成正比例的说法,由于训练题中少不了还有类似的应用,因此,我们也一样介绍了这一说法,在后面的应用中,要让学生体会成正比例和正比例函数的区别联系,在小学里,我们学过:“两种相关联的量,一种量变化,另一种量也随着变化。且一种量随着另一种量的增大而增大。如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成,我们就称这两个变量成正比例。用字母表示:如果用字母x和y表示两种相关联的量,用k表示它们的比值,正比例关系可以用以下关系式表示:y/x=k(一定)。正比例关系两种相关联的量的变化规律:同时扩大,同时缩小,比值不变”。正比例函数是:“形如y=kx的函数(k为常数,k≠0)”。两者揭示的两个变量之间的数量关系实质是一样的,成正比例“比值一定”,则两个变量不能取零,在y=kx中自变量x和函数y的值可以为零。另外,小学里没有学习负数,因此学生的印象是:两个变量成正比例,则“同时扩大,同时缩小,比值不变”,而正比例函数y=kx中,当k>0时,y随x的增大而增大,当k<0时,y随x的增大而减小。再有,两个变量成正比例,这两个变量可以是一个字母,也可以是一个整体,如y+3与3x-1成正比例,当x=1时,y=3,求y与x的函数关系式,此时y不是x的正比例函数。

人教版八年级数学教学反思15

在二次根式这一章的学习中,重点是熟练掌握二次根式的运算,教学的关键是理解二次根式的性质,在本章教学中,存在以下问题:

1、课前没很好确定学生的基础知识情况

高估学生对学过知识的掌握,认为平方根这一章的知识掌握不错,所以在二次根式结果是非负数以及二次根式的被开方数也是非负数。我把这两个结论草草给出,这样导致基础差的学生根本不知道这两个结论的来源。

2、课堂没完全还给学生

预习时间不充分,大部分学生是回顾了本章的知识点,但还没来得及思考,易错点没有来得及整理展示讨论,老师就开始讲课,总怕展示时间过多以至于本节任务完不成。课堂活动时间也不充分,并且学生在思考问题时给予提示过多,以至于学生顺着老师的思路走,没有了自己的思考体系。因为时间不足,所以老师只好代替学生走了一下过场,订正答案,还有一部分学生还没有做完。这样就不能真正检验学生掌握情况,不能及时反馈,及时采取措施进行补救。

3、课后练习不能真正落实

学生不能很熟练地化简二次根式,以致于二次根式的加减乘除不能顺利进行。例如不会熟练化成最简二次根式,导致学生对二次根式的加减感到很困难。在这里,应要求学生对100以内的二次根式化简熟练掌握,为二次根式的加减打下扎实的基础。对二次根式的加减,大部分学生理解同类二次根式,并能够合并同类二次根式,出现的问题在于二次根式的化简,学困生在于整式的加减,整式的乘除,分式的加减和乘除的运算的公式和运算法则不清,即使把本节知识听懂了,由于过去的知识不牢固,造成运算结果不正确。把过去学过的知识复习,使学生能够独立完成二次根式的运算。

《人教版八年级数学教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式